Analysis-first functional genomics, gene-expression and RNA biology

About image
The research in Sudlab integrates the use computational genomics with molecular cell biology, to answer questions about gene expression. We are particularly interested in post-transcriptional gene-regulation and how it is encoded in the sequence. The continuous scientific advances over the years have seen an increase in profiling of large numbers of tissues and cell samples, emphasizing the need of developing high-throughput techniques for analysing such complex data.

Sudlab uses bioinformatic and functional genomics tools to answer questions on splice variants, the effects of non-coding variants, transcript and protein expression levels etc. We are generally focused on the biological question, but will develop new tools and approaches where it is necessary.

Sudlab was established by Dr Ian Sudbery at the University of Sheffield, in 2014. It is now a thriving community of research staff and postgraduate students (MBiolSci, MSc and PhD).
Tabakhi S, Vandermeulen C, Sudbery I, Lu H

arXiv 05 Aug 2024 10.48550/arxiv.2408.02845

Read Here

Abstract
The increase in high-dimensional multiomics data demands advanced integration models to capture the complexity of human diseases. Graph-based deep learning integration models, despite their promise, struggle with small patient cohorts and high-dimensional features, often applying independent feature selection without modeling relationships among omics. Furthermore, conventional graph-based omics models focus on homogeneous graphs, lacking multiple types of nodes and edges to capture diverse structures. We introduce a Heterogeneous Graph ATtention network for omics integration (HeteroGATomics) to improve cancer diagnosis. HeteroGATomics performs joint feature selection through a multi-agent system, creating dedicated networks of feature and patient similarity for each omic modality. These networks are then combined into one heterogeneous graph for learning holistic omic-specific representations and integrating predictions across modalities. Experiments on three cancer multiomics datasets demonstrate HeteroGATomics' superior performance in cancer diagnosis. Moreover, HeteroGATomics enhances interpretability by identifying important biomarkers contributing to the diagnosis outcomes.
Baquero-Pérez, B.; Yonchev, I. D.; Delgado-Tejedor, A.; Medina, R.; Puig-Torrents, M.; Sudbery, I.; Begik, O.; Wilson, S. A.; Novoa, E. M.; Díez, J.

Nature Communications 15(1) Article number 1964 11 Mar 2024; 
10.1038/s41467-024-46278-9

Read Here

Abstract

Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of m6A in CHIKV and DENV RNAs. For this, we combine m6A-Seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we find no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery does not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection has no effect on the m6A machinery’s localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.
Riley JJ, Alexandru-Crivac CN, Bryce-Smith S, Wilson SA, Sudbery IM
bioRxiv 12 Jan 2024; 10.1101/2024.01.10.575007

Abstract
Background Splicing in 3’ untranslated regions (3’ UTRs) is generally considered a signal to elicit transcript degradation via nonsense-mediated decay (NMD) due to the presence of an exon junction complex (EJC) downstream of the stop codon. However, 3’ UTR intron (3UI)-containing transcripts are widespread and highly expressed in both normal tissues and cancers.
Results Here we present and characterise a novel transcriptome assembly built from 7897 solid tumour and normal samples from The Cancer Genome Atlas. We identify thousands of 3UI-containing transcript isoforms, many of which are expressed across multiple cancer types. We find that the expression of core NMD component UPF1 negatively correlates with global 3UI splicing between normal samples, however this correlation is lost in colon cancer. We find that 3UIs found exclusively within 3’ UTRs (bona-fide 3UIs) are not predominantly NMD-sensitising, unlike introns present in 3’ UTRs due to premature termination. We identify HRAS as an example where 3UI splicing rescues the transcript from NMD. Bona-fide, but not premature termination codon (PTC) carrying 3UI-transcripts are spliced more in cancer samples compared to matched normals in the majority of cancer types analysed. In colon cancer, differentially spliced 3UI-containing transcripts are enriched in the canonical Wnt signalling pathway, with CTNNB1 being the most over-spliced in colon cancer compared to normal. We show that manipulating Wnt signalling can further regulate splicing of Wnt component transcript 3’ UTRs.
Conclusions Our results indicate that 3’ UTR splicing is not a rare occurrence, especially in colon cancer, where 3’ UTR splicing regulates transcript expression in EJC-dependent and independent manners.

Katsarou, A.; Trasanidis, N.; Ponnusamy, K.; Kostopoulos, I. V.; Alvarez-Benayas, J.; Papaleonidopoulou, F.; Keren, K.; Sabbattini, P. M. R.; Feldhahn, N.; Papaioannou, M.; Hatjiharissi, E.; Sudbery, I. M.; Chaidos, A.; Caputo, V. S.; Karadimitris, A.

Blood Advances 2023: 7(21), 6395-6410; 10.1182/bloodadvances.2023009772

Read Here

Abstract
Deregulated expression of lineage-affiliated transcription factors (TFs) is a major mechanism of oncogenesis. However, how the deregulation of nonlineage affiliated TF affects chromatin to initiate oncogenic transcriptional programs is not well-known. To address this, we studied the chromatin effects imposed by oncogenic MAF as the cancer-initiating driver in the plasma cell cancer multiple myeloma. We found that the ectopically expressed MAF endows myeloma plasma cells with migratory and proliferative transcriptional potential. This potential is regulated by the activation of enhancers and superenhancers, previously inactive in healthy B cells and plasma cells, and the cooperation of MAF with the plasma cell-defining TF IRF4. Forced ectopic MAF expression confirms the de novo ability of oncogenic MAF to convert transcriptionally inert chromatin to active chromatin with the features of superenhancers, leading to the activation of the MAF-specific oncogenic transcriptome and the acquisition of cancer-related cellular phenotypes such as CCR1-dependent cell migration. These findings establish oncogenic MAF as a pioneer transcription factor that can initiate as well as sustain oncogenic transcriptomes and cancer phenotypes. However, despite its pioneer function, myeloma cells remain MAF-dependent, thus validating oncogenic MAF as a therapeutic target that would be able to circumvent the challenges of subsequent genetic diversification driving disease relapse and drug resistance.
Yonchev, I. D.; Apostol, C. V.; Griffith, L.; Li, A.; Butler, L.; Patrick, H.; Aguilar-Martinez, E.; Whelan, A. G. R.; Evans, C.; Dickman, M. J.; Cooper-Knock, J.; Shaw, P. J.; West, S.; Barbaric, I.; Sudbery, I. M.; Wilson, S. A.

bioRxiv July 2023; 10.1101/2023.07.22.550030

Read Here

Abstract
Integrator cleaves nascent RNA, triggering RNA polymerase II transcription termination, but how cleavage is regulated is poorly understood. Here we show hnRNPUL1 ensures efficient Integrator-mediated cleavage of nascent RNA downstream of snRNA genes and, in the case of U2 snRNA, binds a terminal stem-loop involved in this process. In the nucleoplasm, hnRNPUL1 binds U4 snRNA and SART3 and enables efficient reformation of the U4:U6 di-snRNP for further rounds of pre-mRNA splicing. Sustained hnRNPUL1 loss leads to reduced levels of snRNAs, defects in histone mRNA 3′ end processing and loss of Cajal bodies. hnRNPUL1 binds RNA through multiple domains, including a globular central domain comprising tightly juxtaposed SPRY and dead polynucleotide kinase folds. This latter fold allows binding to 5′-monophosphorylated RNAs in a mutually exclusive manner with ATP binding and functions as an XRN2 antagonist when overexpressed. We identify a cohort of amyotrophic lateral sclerosis patients harbouring disruptive mutations in hnRNPUL1. SMN loss in spinal muscular atrophy and hnRNPUL1 loss both disrupt snRNP biogenesis, leading to motor neuron death, suggesting a common aetiology.

A mechanism for oxidative damage repair at gene regulatory elements

Ray S, Abugable AA, Parker J, Liversidge K, Palminha NM, Liao C, Acosta-Martin AE, Souza CDS, Jurga M, Sudbery I, El-Khamisy SF.

Nature. 2022

Sep;609(7929):1038-1047. doi: 10.1038/s41586-022-05217-8. Epub 2022 Sep 28. PMID: 36171374.

Read here​​​

Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.
Alvarez-Benayas J*, Trasanidis N*, Katsarou A*, Ponnusamy K, Chaidos A, May PC, Xiao X, Bua M, Atta M, Roberts IAG, Auner HW, Hatjiharissi E, Papaioannou M, Caputo VS$, Sudbery IM$, Karadimitris A$. Nat Commun. 2021 Sep 14;12(1):5450

* Joint first
$ Joint Corresponding

Read here

Abstract
Multiple myeloma is a genetically heterogeneous cancer of the bone marrow plasma cells (PC). Distinct myeloma transcriptome profiles are primarily driven by myeloma initiating events (MIE) and converge into a mutually exclusive overexpression of the CCND1 and CCND2 oncogenes. Here, with reference to their normal counterparts, we find that myeloma PC enhanced chromatin accessibility combined with paired transcriptome profiling can classify MIE-defined genetic subgroups. Across and within different MM genetic subgroups, we ascribe regulation of genes and pathways critical for myeloma biology to unique or shared, developmentally activated or de novo formed candidate enhancers. Such enhancers co-opt recruitment of existing transcription factors, which although not transcriptionally deregulated per se, organise aberrant gene regulatory networks that help identify myeloma cell dependencies with prognostic impact. Finally, we identify and validate the critical super-enhancer that regulates ectopic expression of CCND2 in a subset of patients with MM and in chronic lymphocytic leukemia.

Niespolo C, Johnston JM, Deshmukh SR, Satam S, Shologu Z, Villacanas O, Sudbery IM, Wilson HL, Kiss-Toth E. Front Immunol. 2020 Nov 27;11:574046.

Read it here

Abstract

The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3'untranslated region (3'UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple "high confidence" miRNAs potentially binding to the 3'UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3'UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.

Baidžajevas K, Hadadi É, Lee B, Lum J, Shihui F, Sudbery I, Kiss-Tóth E, Wong SC, Wilson HL. Atherosclerosis. 2020 Jul;305:10-18.

Abstract

Background and aims: Lipid-rich foam cell macrophages drive atherosclerosis via several mechanisms, including inflammation, lipid uptake, lipid deposition and plaque vulnerability. The atheroma environment shapes macrophage function and phenotype; anti-inflammatory macrophages improve plaque stability while pro-inflammatory macrophages promote rupture. Current evidence suggests a variety of macrophage phenotypes occur in atherosclerotic plaques with local lipids, cytokines, oxidised phospholipids and pathogenic stimuli altering their phenotype. In this study, we addressed differential functioning of macrophage phenotypes via a systematic analysis of in vitro polarised, human monocyte-derived macrophage phenotypes, focussing on molecular events that regulate foam-cell formation.

Methods: We examined transcriptomes, protein levels and functionally determined lipid handling and foam cell formation capacity in macrophages polarised with IFNγ+LPS, IL-4, IL-10, oxPAPC and CXCL4.
Results: RNA sequencing of differentially polarised macrophages revealed distinct gene expression changes, with enrichment in atherosclerosis and lipid-associated pathways. Analysis of lipid processing activity showed IL-4 and IL-10 macrophages have higher lipid uptake and foam cell formation activities, while inflammatory and oxPAPC macrophages displayed lower foam cell formation. Inflammatory macrophages showed low lipid uptake, while higher lipid uptake in oxPAPC macrophages was matched by increased lipid efflux capacity.

Conclusions: Atherosclerosis-associated macrophage polarisation dramatically affects lipid handling capacity underpinned by major transcriptomic changes and altered protein levels in lipid-handling gene expression. This leads to phenotype-specific differences in LDL uptake, cellular cholesterol levels and cholesterol efflux, informing how the plaque environment influences atherosclerosis progression by influencing macrophage phenotypes.